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ABSTRACT

The field of digital libraries (DLs) coalesced in 1994: the first
digital library conferences were held that year, the awareness
of the World Wide Web was accelerating, and the National
Science Foundation awarded $24 Million (U.S.) for the Dig-
ital Library Initiative (DLI). In this paper we examine the
state of the DL domain after a decade of activity by applying
social network analysis to the co-authorship network of the
past ACM, IEEE, and joint ACM/IEEE digital library con-
ferences. We base our analysis on a common binary undi-
rected network model to represent the co-authorship net-
work, and from it we extract several established network
measures. We also introduce a weighted directional network
model to represent the co-authorship network, for which we
define AuthorRank as an indicator of the impact of an in-
dividual author in network. We show that the weighted
directional model allows for the deployment of an author
navigator application for convenient visual examination of
the co-authorship network. We also investigate the amount
and nature of international participation in JCDL.

Categories and Subject Descriptors

H.3.7 [Information Storage and Retrieval]: Digital Li-
braries

1. INTRODUCTION

In 1994, the National Science Foundation awarded $24
Million (U.S.) to six institutions, thereby officially kicking
off the federally-sponsored DL research program. Also in
1994, the first of what was later to become the IEEE Ad-
vances in Digital Libraries (ADL) conference and the ACM
Digital Libraries (DL) conference were held in New Jersey
and Texas, respectively. In 2001, the two conference series
were merged and the first ACM/IEEE Joint Conference on
Digital Libraries (JCDL) was held in Virginia. These con-
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ferences have induced a pattern of collaborations which has
shaped the domain of DLs over the past decade. To study
the structure of these collaborations, we used social net-
work analysis to investigate authorship trends in the com-
posite corpus of the long papers, short papers and posters
presented at all those DL conferences.

Social network analysis has attracted considerable interest
in recent years and plays an important role in many disci-
plines [4]. In information science, social network analysis
has applications in citation networks, co-citation networks,
collaboration networks, and recently also in web graph anal-
ysis [19, 24].

A co-authorship network is a type of collaboration net-
work. A popular culture example is the Oracle Of Bacon
project [23], which determines the distance between any ac-
tor and Kevin Bacon by examining movie co-starring rela-
tionships. An early example of analyzing a scholarly co-
authorship network is the Erdos Number Project, in which
the smallest number of co-authorship links between any in-
dividual mathematician and the Hungarian mathematician
Erdos were calculated [8]. Newman studied and compared
the co-authorship graph of arXiv, Medline, SPIRES, and
NCSTRL [18]. Co-authorship analysis has also been ap-
plied to various ACM conferences: Information Retrieval
(SIGIR)[22], Management of Data (SIGMOD) [17] and Hy-
pertext [10], as well as mathematics and neuroscience [13]
and information systems [11]. Although the above projects
have successfully observed interesting patterns in specific
communities, many of them focus on special features of the
observed network. Furthermore, most network models used
in those analysis are undirected and have a binary (0 or 1)
weight for the edges between authors.

In this paper we present a study of the co-authorship net-
work of DL conferences (ACM DL, IEEE ADL, and JCDL)
held between 1994 and 2003. A binary undirected co-authorship
network is built using XML encoded data available from
DBLP [15]. Social network metrics, including small world
analysis, component analysis, and centrality analysis, are
applied to this network.

Furthermore, we extend this binary network by consid-
ering co-authorship frequency. A long-time collaboration
between two researchers - resulting in many co-authored
papers - might be considered more important than an oc-
casional co-authorship in a large cross-institutional project
- resulting in many co-authors in a single paper. Thus we
propose a weighted directed network model to represent the



co-authorship network, and AuthorRank, an alternative cen-
trality metric. Several of the presented centrality metrics are
then cross-validated against the dataset of ADL/DL/JCDL
program committee members. Also AuthorRank rankings
obtained from the directed weighted network model are cor-
related with metrics obtained from the undirected binary
network model. We show that AuthorRank can also be
used by an author navigator for convenient lookup of the co-
authorship network. We also investigate the amount and na-
ture of international participation in JCDL. The presented
material sketches an interesting picture of the JCDL com-
munity, and the approach used can also be easily extended
to other collaboration networks.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work; in Section 3 we describe the
network models and metrics used in our analysis; Section 4
presents the results of our analysis of the JCDL co-authorship
graph using those models and metrics, and Section 5 presents
our conclusions.

2. RELATED WORK

Social networks have been long studied and have gained
increasing importance in recent years [24]. Social network
analysis studies relationships among social entities - actors,
and the patterns and implications of these relationships.

Various metrics are applied in social networks analysis
to study either global properties or actor properties. For
global properties, the whole network is analyzed, and at-
tempts are made to find all relations by components, cliques,
small worlds, etc. For actor properties, the network context
of a single actor is analyzed, and attempts are made to mea-
sure the differences between important and non-important
actors. The importance of an actor can be measured by
centrality - i.e. position of the actor in the network - or
prestige - endorsements received by the actor from other ac-
tors. Prestigious actors are not only endorsed by many ac-
tors, but the endorsing actors must also be prestigious. This
recursive nature of prestige is mathematically addressed by
eigenvector analysis. Basic eigenvector analysis is sometimes
wrongly applied to asymmetric networks in which some ac-
tors do not receive any endorsement. Enhancements such as
alpha-centrality have been developed to address this prob-
lem [7]. Eigenvector analysis is also used to measure the
prestige of web pages; well-known algorithms include Google’s
PageRank [21] and Kleinberg’s HITS [14]. However, in both
algorithms all edges have binary weight. Bharat and Hen-
zinger [6] developed a weighted edge scheme to improve the
HITS algorithm, and it is also possible to modify the PageR-
ank formulation to take edge weight into account [9]. In
collaboration networks, Li and Chen used numbers of col-
laborations to define a weighted network model [16]. They
concluded that the distribution of connection strengths de-
cays in a power-law form.

3. FRAMEWORK AND MODEL

Graph theory has been used in social network analysis
since the late 1940s [24]. Thereby, the whole network is
treated as a graph, consisting of nodes joined by edges or
links. In this paper, the terms node, actor, and author are
interchangeable. Simiarly, the terms edge, relationship, and
co-authorship are also used interchangably.

3.1 BinaryUndirected Co-Author ship Networ k

Perhaps the simplest co-authorship network model is based
on an undirected graph G in with each edge represents a co-
authorship relationship. Consider two articles:

article 1, Author vy, Author va, Author vs
article 2, Author vi, Author v

If any two authors co-authored an article, an edge with
unit weight is created (Figure 1). The graph is denoted as
a undirected unit-weighted graph G = (V, E), where the set
of n authors is denoted V' = {vi,...v,} and E represents
the edges between authors. As will be shown in the next
sections, various graph metrics can be extracted from this

kind of network.

Figure 1: Binary undirected co-authorship network

3.2 Metricsfor aBinary Undirected Co-Author ship

Network

A number of social network metrics are available for mea-
suring the characteristics of a binary undirected collabora-
tion network, including components analysis, small world
analysis, and centrality analysis. These metrics measure
various network properties and some may only be applied
under certain conditions. The metrics used in this paper are
listed in Table 1 and discussed below.

3.2.1 Component Sze Analysis

A component of a graph is a subset with the character-
istic that there is a path between any node and any other
node of this subset. A co-authorship network usually con-
sists of many disconnected components (e.g. disconnected
research groups or individuals), and component analysis can
be used to learn about the structure of the network. Some
network analysis methods are only widely used in connected
networks. Therefore, in networks with disconnected com-
ponents, those methods are typically only applied to the
largest connected component, as shown in Table 1.

3.2.2 Small World Analysis

Small world analysis is typically only applied in a fully
connected network, and is used to measure global properties
of the network. The characteristic path length of a graph
G is defined as the average shortest path length between
each pair of vertices [25] . The clustering coefficient mea-
sures how well the direct neighbors of a vertex are connected
among themselves. A graph is a small world graph if it is
characterized by the following two conditions: (1) it has
a much higher clustering coefficient than a similarly sized
random graph, and (2) it has only a slightly larger char-
acteristic path length than a similarly sized random graph.
Studies have shown that many collaboration networks are
small world graphs [5].



Table 1: Co-authorshi

p network metrics

Metric Type Property Scope Importance

Binary | Weighted | Actor | Global | Whole Largest Centrality | Prestige
Network | Component

Component X X X

Small World X X X

Cluster X X X

Closeness X X X X

Betweeness X X X X

Degree X X X X

PageRank X X X X

AuthorRank X X X X

3.2.3 Degree, Closeness, Betweenness Centrality

The authoritative text by Wasserman [24], defines three
centrality measures commonly used in social network analy-
sis: degree centrality, closeness centrality, and betweenness
centrality. Degree centrality of a node is defined as the num-
ber of edges adjacent to this node. The closeness centrality
of a node is equal to the total distance of this node from
all other nodes. Since a shorter distance means better con-
nectivity, standardized closeness, which is the inverse mea-
sure of distance, is used to measure centrality. Closeness
centrality is best used in connected networks. Betweenness
centrality is the number of shortest paths that pass through
a given node. Betweenness centrality can be used in discon-
nected networks, however it may generate a large number of
nodes with zero centrality, since many nodes may not act as
a bridge in the network, as shown in Table 1.

3.2.4 PageRank

PageRank is the ranking mechanism at the heart of Google.
It can either be explained by a link-based analysis or by a
random walk model [20, 21]. PageRank forms a probability
distribution over web pages. PageRank can be calculated
using a simple iterative algorithm, and corresponds to the
principal eigenvector of the normalized link matrix of the
web. PageRank is originally designed to measure the hy-
perlink structure of the web, which is a directed graph in
nature. In order to use PageRank in the context of a co-
authorship network, we build two directional edges e;; and
ej; for each edge e between author v; and v;. This fits well
with the two models underlying PageRank: in the link anal-
ysis model, the directional edges can be understood as the
mutual endorsement of authors; in the random walk model,
the directional edges can be understood as the movement of
a surfer in either direction on edge e. PageRank can legiti-
mately be applied to the proposed network model since it is
a special case of the network model underlying the PageR-
ank metric.

3.3 Weighted Co-Author ship Network

We believe that the binary undirected network without
link weights does not fully represent frequency and impor-
tance of interaction in a co-authorship network. There are
many cases in which the binary undirected network does
not correspond with a common sense notion of magnitude.
For example, if two authors co-publish many papers, should
the link between them be considered more important than
the link between occasional co-authors? Also, if one article

has two authors and another article has a hundred authors,
should the authors in the first article be considered more
connected than those of the second article? Although these
assumptions are arguable, we consider a link between two
authors to be more important than another if: (1) they have
co-authored more papers, or (2) their papers have fewer co-
authors.

Therefore, we formally define several metrics to measure
the importance of links. Let the set of n authors be denoted
as V = {v1,...vn}. Let the set of m articles be denoted as
A ={a,...,ar,...am}, and f(ax) is the number of authors
of article ay. We define:

Weight of Link in Single Article: If author v; and
v; are co-authors in article ag,

9(i,j,k) = 1/(f(ax) — 1) (1)

This gives more weight to co-author relationships in articles
with fewer total co-authors than articles with large numbers
of co-authors.

Accumulated Weight of Link:

Cij = 29(17]7 k) (2)
k=1

This gives more weight to authors who co-publish more pa-
pers together.
Normalized Directed Weight:

wi; =cij /Y cin (3)
k=1

This ensures that the weights of all of an author’s relation-
ships sum to one.

We represent the co-authorship network as a directed weighted

graph. A graph G is denoted G = (V, E, W), where V is the
set of nodes (authors), E is the set of edges (co-author re-
lationships between authors), and W is the set of weights
w;j associated with each edge connecting a pair of authors
(viv Uj ) .

Similar to PageRank, the weighted co-authorship network
model also has an intuitive basis in random walks on graphs
(Figure 2). The normalized weight corresponds to the prob-
ability distribution of a random walk on the co-authorship
graph. A random walker may choose to start navigating the
network from any author. In Figure 2, if the walk starts from
author v1, the walker may travel to vz or vz with probability



0.75 and 0.25 respectively. If the walker starts from author
vs, however, the walker has same probability of visiting v; or
v2. The weighed co-authorship also has an intuitive meaning
as the endorsement of an author. For example, from Figure
2, we can understand that v and vz have a higher mutual
endorsement since they co-authored more papers.

Weighted Relationship

V1-v2: 1.5 —
Article 1: V1-V2-v3  V1-V3:0.5 0.75
Article 2: V1-V2 V2-V3: 0.5
. . . 0.75
Normalized Relationship 0.25
V1->V2: 1.5/2=0.75 05
V2->V1: 1.5/2=0.75 0.25

V1->V3: 0.5/2 =0.25

V3->V1: 0.5/1=0.5

V2->V3: 0.5/2=0.25 05
V3->V2: 0.5/1=0.5

Figure 2: Weighted co-authorship network

3.4 Metricsfor aWeighted Co-Author ship Net-
work

3.4.1 AuthorRank

Similar to PageRank, we assume Authors vyi...vs, point-
ing to author v;. We also use the same dampening factor
d in PageRank, and the weight w is defined in the previous
section. The AuthorRank of an author v; is given as follows:

AR(v;) = (1—=d)+d(AR(ve1) ¥ Wo,p i+ ... + AR(Ven) % Wy, i)

(4)
The AuthorRank can be calculated with the iterative algo-
rithm used by PageRank. One may think of AuthorRank
as a generalization of PageRank by substituting wy,, ,; with
1/number_of —outlink in PageRank.

Looking at the examples underlying Figure 1 and Fig-
ure 2 reveals an obvious advantage of AuthorRank (defined
for the weighted network) over the centrality measures and
PageRank (defined for the binary network): the latter will
generate same rank for vy, vz, vs which is counter-intuitive
as we argued before. AuthorRank, however, will generate
the same rank for v; and vs, and a lower rank for vs.

3.5 Interactive Author Navigator

The weighted model also has an advantage for the visu-
alization of a co-authorship graph. The visualization of a
well connected author can be rather crowded and difficult
to read. With a weighed network model, important links
can be emphasized and trivial links can be truncated. As
one can imagine, the whole co-authorship graph is too large
to fit on a single computer screen. To remedy this, we built
an interactive author navigation tool based on the webdot
tool of GraphViz [2]. Users can select a preferred author
(center of the graph), set a distance from the selected au-
thor, and indicate the minimum weight necessary for links
to be displayed. Based on those parameters, a subgraph
is dynamically constructed and visualized. In this visualiza-
tion, the weight of a link plays an important role as it allows
users to identify important links. The graph is clickable and
the user can navigate to other interesting authors.

4. JCDL CO-AUTHORSHIP ANALYSIS

4.1 Generating the Co-authorship Network
We extracted co-authorship data from DBLP for ACM
DL (1995-2000), IEEE ADL (1994-2000), and JCDL (2001-
2003). This includes all long papers, short papers, posters,
demonstrations, and organizers of workshops.! The dataset

contained 1567 authors, 759 publications, and 3401 co-authorship

relationship pairs. Some statistics are readily available from
this data set. For example, the number of articles, authors,
international (non-US) authors, and new authors per year is
shown in Figure 4. It can be seen that number of articles and
the number of authors are highly correlated, and that a ma-
jor boost occurred following the merger of the ACM/IEEE
DL series into a single JCDL conference. Figure 3 shows
the number of publications per author. The values range
between 1 and 22, with 4 authors publishing more than 10
papers and 78% of the authors publishing only 1 paper and
95% authors having 3 papers or less. Authors with 8 or more
publications are shown in Table 2. Each paper has a mean
of 3.02 authors and a median of 3 authors. The distribution
of number of authors per paper is shown in Table 3.

We also studied international collaboration. Approximately
72% (1133/1567) of the authors are affiliated with U.S. insti-
tutions. We discovered that among 3401 co-authorship rela-
tionships, only about 7% are collaborations between authors
from different countries. A country collaboration network is
created by accumulating cross-country collaborations from
the author network. In Figure 5, we represent countries by
country code domain [1]; two countries are closer to each
other if authors from those countries collaborated closely.
The figure can only be considered approximate due to the
limitations of the visualization technology used. Figure 5
shows that the JCDL community is centred around .us, with
.uk, .nz, and .sg closely surrounding .us; .nz and .de also play
significant roles in connecting different countries. There are
nine countries (.es, .ie, .at, .hu, .ol .in, .kr, .il, and .za; with
61 authors) that are not connected with other countries.
The distribution of authors from each country is shown in
Figure 6.

FEEET
author-puklication <

1ese E

number of authors

1 1@ 100
Aumber of publications

Figure 3: Number of papers per author

! Unfortunately, we discovered just prior to submission that
DBLP had mislabeled ADL 94 as DL 94 and omitted DL
94 altogether. We are entering the data for DL 94 manu-
ally, and will recalculate our results. However, we do not
believe that the inclusion of DL 94 will significantly alter
our findings.
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Table 2: Authors with 8 or more publications

Name Publications
Hsinchun Chen 22
Edward A. Fox 17
Tan H. Witten 16
Hector Garcia-Molina 13
Alexander G. Hauptmann 10
Gary Marchionini 10
Judith Klavans 9

Carl Lagoze

Michael L. Nelson
David Bainbridge
Richard Furuta
Ee-Peng Lim
Catherine C. Marshall
Terence R. Smith

Q0| 00| Co| Co| Co| ©| ©

Table 3: Distribution of number of co-authors per

paper
Number of authors | Number of papers | Percentage
1 149 19.6%
2 216 28.5%
3 179 23.6%
4 94 12.4%
5 45 5.9%
6 33 4.3%
7 20 2.6%
8 7 0.9%
9 4 0.5%
10 5 0.7%
11 1 0.1%
12 2 0.3%
13 1 0.1%
14 1 0.1%
15 2 0.3%
total 100%

4.2 Component Size Analysis

As is to be expected, the co-authorship network is not a
single connected graph. The largest component of the net-
work has 599 authors, the second largest component has
31 nodes and so on. The distribution of component size
roughly follows a power law distribution as can be seen in
Figure 7. The entire co-authorship network with all compo-
nents is shown in Figure 8, in which nodes represent authors
and links represent collaborations. The largest component
is on the left side of the Figure, while the right side shows
many small components. Well-connected components are
recognizable by their very dense (dark) shape.

Nascimento [17] reports that the largest component in
SIGMOD’s co-authorship graph has about 60% of all au-
thors. In the four co-authorship networks studied by New-
man [18], NCSTRL has the smallest largest component,



freguency

T
distribution of component size Q

& ©

1 i@ 18@ 1888

size of component

Figure 7: Distribution of component size

Figure 8: Component size analysis

containing 57.2% of all authors. However, in the JCDL
co-authorship network the largest component only includes
38% of all authors. Several possible explanations could ac-
count for this low value, including the relative immaturity
of the the DL field, the multi-disciplinary nature of the
composite JCDL conference series, the fact that many DL
projects grow from a “grass-roots”, institutionally oriented
focus[12], or the rather restricted nature of international col-
laboration in the DL field.

To better understand the nature of major components
and the reason for them not being in the large component,
we conducted a manual analysis of other large components.
This showed that the most dense shapes include authors
from the same institution or working on the same project.
We counted 18 components with sizes ranging from 7 to 31.
By checking the affiliation of authors, we discovered that 5
components consist mainly of non-US participants, and that
the 31-node component represents the medical informatics
community. By checking titles and content, we found that 13
components account for short papers or posters only, many
of which are about a specific DL application in a particular
scenario. Therefore, it is our guess that the short paper and
poster programs encourage a wide participation from other
disciplines.

4.3 Cluster Analysis

The weighted graph model also improves the clustering
because close and frequent collaboration causes higher simi-
larity scores between authors, resulting in them being grouped
closer together. By representing each author as a vector
of relationships to other authors using the weighted graph
model, we conducted a bottom-up, hierarchical clustering
algorithm on the largest component of the co-authorship
network. The hierarchical clustering algorithm starts with
all authors and successively combines them into groups with
high inter-authorship similarity. Typically, the earlier merg-
ers happen between groups with a large similarity, and sim-
ilarity becomes lower and lower for later merges. The result
reveals initial clusters do not necessarily reflect institutional
boundaries. This may be due to the fact that authors may
change institutions, and in some cases strong collaborations
exist between institutions. In the next stage institutions
are merged into larger clusters due to their joint publica-
tions or common research interests. A well-connected author
is usually only clustered in this stage, which confirms that
well-connected authors play an important role in connecting
different clusters.

As a matter of illustration, the clusters to which the au-
thors of this paper belong are shown in Figure 9. As can
be seen, small clusters are initially formed in each authors’
institution (LANL and Old Dominion Univerity), and later
institutions are merged to larger clusters. The frequency of
joint publications may explain the different stage of merg-
ing. By checking publications in each cluster, we found that
LANL, Cornell University and the University of Southamp-
ton form a larger cluster because Cornell cooperated with
Southampton in the Open Citation project, and LANL worked
with Cornell on the Open Archives Initiative. Similarly,
Virginia Tech (VT) collaborated with the Federal Univer-
sity in the Web-DL project, with Penn State (PSU) in the
CITIDEL project, and with Old Dominion University (ODU)
in the NCSTRL project. ODU and PSU have no joint pub-
lications, they are clustered together because both collabo-



rated with VT. VT and Federal University probably merged
earlier because they have more joint publications.

4.4 Small World Analysis

Since small world analysis can only be done in a connected
graph, we used the largest component of the co-authorship
network for our calculation. The largest component (599
authors and 1897 links) has a clustering coefficient of 0.89,
and characteristic path length of 6.58. With a similarly
sized connected random graph, the clustering coefficient is
0.31 and characteristic path length is 3.66. This means that
the JCDL co-authorship network is indeed a small world
graph. The largest component is shown in Figure 10.

Nascimento [17] reported that the SIGMOD co-authorship
graph yields a clustering coefficient of 0.69, and a charac-
teristic path length of 5.65. In all four networks studied
by Newman, the largest clustering coefficient generated is
0.726. This shows a rather high clustering coefficient of the
JCDL co-authorship network, meaning that co-authors of
one author are more likely to publish together. The JCDL
co-authorship network also has a rather long characteristic
path length, indicating that authors from different groups
are not as well connected as, for example, those in the SIG-
MOD co-authorship network.

Virginia Tech ----authors

Federal
University

Penn State Univ

Old Dominion
niv

LANL

Cornell

Southampton

[ THE

...... other clusters......

Figure 9: Clustering result

Figure 10: Largest component of the co-authorship
network
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45 Centrality

Using the R package [3], we calculated the degree, close-
ness, and betweenness centrality for the binary undirected
co-authorship network only, as these metrics are not well de-
fined in a weighted network. The highest ranking 20 authors
for each metric and their scores are listed in Table 4.

451 DegreeCentrality

The degree centrality distribution is shown in Figure 11.
It also follows a rough power-law distribution with few au-
thors having a high degree of connection. This measure-
ment has the disadvantage of giving many authors the same
weight. It is also biased to authors with many collaborators
in a single publication.

45.2 Closeness Centrality

The closeness centrality is only applied to the largest com-
ponent (599 authors) since closeness is not well defined in
a disconnected network. It has a bias towards authors that
are directly connected to a well-connected author. For ex-
ample, a graduate assistant of a prestigous professor may
have a fairly high weight.

45.3 Betweeness Centrality

The betweenness centrality is applied to the whole net-
work, however only 153 authors have positive values. The
remaining 1414 authors do not lie on the paths between
other authors. The computation of betweeness centrality
is the most resource-intensive of all measures we explored,
since it requires enumerating all of the shortest paths be-
tween each pair of nodes. It takes more than one day to
calculate betweenness on an Intel Celeron machine using R

[3].
4.6 PageRank and AuthorRank

We developed a Java program with a MySQL backend
to calculate PageRank and AuthorRank. Both calculations
can be completed in several seconds. The 20 highest scor-
ing authors for the PageRank and AuthorRank metrics are
listed in Table 5.

4.7 Corréeation and Validation

Several articles have compared the performance of cen-
trality and prestige metrics, and a general conclusion can



Table 4: Authors ranked according to centrality measure

rank Degree Betweenness Closeness

1 Hsinchun Chen 59 | Hsinchun Chen 89250.92 | Hsinchun Chen 0.259
2 Edward A. Fox 55 | Edward A. Fox 83163.92 | Edward A. Fox 0.251
3 Terence R. Smith 31 | Judith Klavans 57422.69 | Judith Klavans 0.235
4 Carl Lagoze 31 | William Y. Arms 52242.27 | Gary Marchionini 0.234
5 Judith Klavans 27 | Nina Wacholder 39226.5 | Michael L. Nelson 0.229
6 Zan Huang 26 | Craig Nevill-Manning | 38808.08 | Yiwen Zhang 0.226
7 Gary Marchionini 25 | David M. Levy 35769.0 | Ann M. Lally 0.226
8 William Y. Arms 21 | Ann P. Bishop 32280.0 | Lillian N. Cassel 0.226
9 Richard Furuta 21 | Tobun D. Ng 30197.13 | Byron Marshall 0.225
10 Luis Gravano 20 | Gary Marchionini 29593.86 | Rao Shen 0.225
11 Michael Freeston 19 | Alexander Hauptmann | 29142.0 | William Y. Arms 0.224
12 Tan H. Witten 18 | Catherine C. Marshall 28587.0 | Anne Craig 0.221
13 Hector Garcia-Molina | 18 | Terence R. Smith 23691.87 | Larry Brandt 0.221
14 Michael G. Christel 18 | Carl Lagoze 22192.66 | Terence R. Smith 0.219
15 David Millman 18 | David Bainbridge 21168.03 | Tobun D. Ng 0.219
16 Tamara Sumner 18 | Michael L. Nelson 20696.41 | James C. French 0.219
17 Diane Hillmann 18 | Howard D. Wactlar 17577.0 | Kurt Maly 0.212
18 Yilu Zhou 18 | Ching-chih Chen 17309.67 | Mohammad Zubair | 0.212
19 Jialun Qin 18 | John J. Leggett 15845.5 | Hesham Anan 0.212
20 Mary Tiles 18 | Elizabeth D. Liddy 14964.0 | Xiaoming Liu 0.212

Table 5: Authors ranked according to PageR-
ank/AuthorRank

Rank | PageRank AuthorRank

1 Edward A. Fox Hsinchun Chen

2 Hsinchun Chen Edward A. Fox

3 Carl Lagoze Tan H. Witten

4 Judith Klavans Gary Marchionini

5 Richard Furuta Hector Garcia-Molina

6 Gary Marchionini Carl Lagoze

7 Michael G. Christel Alexander G.

Hauptmann

8 Terence R. Smith Judith Klavans

9 Tamara Sumner Richard Furuta

10 Tan H. Witten Terence R. Smith

11 Alexander G. Tamara Sumner
Hauptmann

12 Hector Garcia-Molina | Ee-Peng Lim

13 Javed Mostafa Michael G. Christel

14 Alexa T. McCray Michael L. Nelson

15 Ee-Peng Lim Wee Keong Ng

16 David Bainbridge Javed Mostafa

17 Sally Jo Cunningham | David Bainbridge

18 Luis Gravano J. Alfredo Sanchez

19 Catherine C. Marshall | Alexa T. McCray

20 W. Bruce Croft Andreas Paepcke

be that no single measure is suited for all applications; each
method has its virtues and utility [24, 9]. We verified and
compared metrics in two ways: by the computation of the
Spearman correlation coefficient across ranking methods,
and by cross-validation against the dateset of JCDL pro-
gram committee members.

The Spearman correlation coefficient is used to measure
the strength of association between two variables. In our
case, since betweenness generated only 153 authors with
positive ranking, and closeness centrality has only been cal-
culated for the largest component, we only compare degree
centrality, PageRank, and AuthorRank. The correlation co-
efficient between the degree centrality and PageRank is 0.52,
and the correlation coefficient between the degree centrality
and AuthorRank is 0.30 (Figure 12). As expected, PageR-
ank and AuthorRank are more closely correlated with a cor-
relation coefficient of 0.75 (Figure 13).

We also verified each ranking method against a dataset
consisting of all members of the JCDL, ADL and DL pro-
gram committees from 1994 to 2004. This is meaningful,
as program committee members are assumed to be presti-
gious actors in the co-authorship network. To that end, the
names of all JCDL, ADL and DL program committee mem-
bers were collected from the conference web sites or printed
proceedings. Then, the highest scoring 50 authors for each
ranking method (degree, closeness, betweenness, PageRank,
AuthorRank) were matched one by one against each JCDL
committee member to identify matches.

Figure 14 shows the result of this comparison. The high-
est ranking 5 authors for each method almost have a per-
fect match against the dataset of JCDL program committee
members. Overall closeness ranking performs the worst, as
only six authors of the 50 highest ranking authors are on
the JCDL committees. This is not a surprise since closeness
measures the distance to other authors, and since an author
next to a prominent author is not necessarily also a promi-
nent author. Degree centrality had mediocre performance.



Betweenness centrality performs the best among the three
centrality measures. Since betweenness evaluates one’s im-
portance as a bridge between others, this suggests a commit-
tee member may be more likely to serve as a bridge between
research groups than a non-committee member. The differ-
ences among betweeness, PageRank, and AuthorRank may
not be statistically significant.
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Figure 12: Scatter-plot of degree centrality vs. Au-
thorRank

5. CONCLUSIONS

In this paper we investigate the co-authorship network
of the JCDL (and ADL/DL) conference series. We also
present AuthorRank, an alternative metric for ranking au-
thors’ prestige in weighed co-authorship networks. So what
does it all mean? What have we learned about the state
of DL research 10 years after the first DL conference? Our
data paints the picture of a domain that is in many ways still
evolving the rich networks of collaboration common in other
areas of the scientific enterprise. Our co-authorship graphs
indicate a rich tapestry of collaborations across institutional
boundaries, but demonstrate a significantly higher degree of
clustering and dispersion than one would find in other do-
mains. In comparison with other co-authorship networks for
related disciplines, we find the JCDL co-authorship graph
has a smaller largest component, a larger clustering coeffi-
cient and a larger characteristic path length. DL authors
thus collaborate closely within specific clusters but restrict
their collaborations to specific groups of interest.

This applies equally well to the matter of international
collaboration. Approximately 72% of all authors are asso-
ciated with US institutions, followed by a wide margin by
Germany, the United Kingdom and Japan. The JCDL con-
ference thus remains largely an American affair. More dire
news is the amount of international collaboration. Only 7%
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Figure 13: Scatter-plot of PageRank vs. Author-
Rank
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Figure 14: Ranking against JCDL program commit-
tee (1994-2004)



of all co-authorship relations concern international collabo-
rations. This combined with the high degree of clustering
and dispersion indicates the DL domain still leaves many op-
portunities for collaboration unexplored, both domestically
and internationally.

Do these results mean collaboration is less valued in DL
research? Of particular interest is our result demonstrat-
ing how well our calculations of author status, i.e. Author-
Rank, in the co-authorship graph correspond to the JCDL
program committees. Although the domain of DLs is less
well-connected than other scientific domains, the value of
collaboration still functions as an invisible hand guiding the
selection of program committees in at least one seminal DL
conference. It is thus of vital importance that a continued
emphasis be placed on domestic and international collabo-
ration to ensure DL research will be even more of the open,
diverse, but well connected marketplace of ideas it is today.
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